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Abstract. Stationary probability distributions for stochastic processes on linear chains with
closed or open ends are obtained using the matrix product ansatz. The matrices are
representations of some quadratic algebras. The algebras and the types of representations
considered depend on the boundary conditions. In the language of quantum chains we obtain
the ground state ofN -state quantum chains with free boundary conditions or with non-diagonal
boundary terms at one or both ends. In contrast to problems involving the Bethe ansatz, we do
not have a general framework for arbitraryN , which when specialized, gives the known results
for N = 2; in fact, theN = 2 andN > 2 cases appear to be very different.

1. Introduction

The aim of this paper is to present in a systematic way the application of quadratic algebras to
obtain the steady-state probability distribution of one-dimensional stochastic processes with
boundaries. In this section we first present the problem and describe what is already known
about the subject giving the relevant references and then proceed by giving the contents of
the next sections. The list of possible physical applications of our results includes interface
growth [1], boundary induced phase transitions [2–5], the dynamics of shocks [6] or traffic
flow [7].

Consider a linear chain withL sites. On each sitek we put a discrete stochastic variable
βk taking values from{0, 1, . . . , N −1}. For each linkk between sitesk andk+1 we give
transition (intensity) rates0γkγk+1

βkβk+1
giving the probability per unit time for the transition

γk©——
γk+1© →

βk©——
βk+1© .

These are thebulk rates. At the left end of the chain (site 1) we also consider transition
rates

γ1©→
β1©

given by theN × N matrix Lγ1
β1

. Similarly, at the right end of the chain (siteL) we take
processes

γL©→
βL©

0305-4470/98/030845+34$19.50c© 1998 IOP Publishing Ltd 845
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with ratesRγLβL . The matricesL and R give the boundary rates. We consider Markov
processes in continuous time, which implies that the rate matrices areintensity matrices,
which have the property [8]

0
βkβk+1
βkβk+1

= −
N−1∑

γk,γk+1=0
(γk,γk+1)6=(βk,βk+1)

0βkβk+1
γkγk+1

L
β

β = −
N−1∑
γ=0
γ 6=β

Lβγ R
β

β = −
N−1∑
γ=0
γ 6=β

Rβγ . (1.1)

Sometimes it will be convenient to write the intensity matrices (for exampleR) in an
alternative form

R
γ

β = Rβγ (1.2)

indicating by the column (γ ) the initial state and by the row (β) the final state.
Equations (1.1) just state that the sum of the matrix elements on each column of an intensity
matrix is zero. The time evolution of the probability distributionP(β1, β2, . . . βL; t) =:
P({β}; t) is given by the master equation

∂

∂t
P ({β}; t) =

L−1∑
k=1

N−1∑
γk,γk+1=0

0
γkγk+1
βkβk+1

P(β1, β2, . . . , γk, γk+1, . . . , βL; t)

+
N−1∑
γ1=0

L
γ1
β1
P(γ1, β2, . . . , βL; t)+

N−1∑
γL=0

R
γL
βL
P (β1, . . . , βL−1, γL; t). (1.3)

Solving equation (1.3) is equivalent to finding the wavefunction of an imaginary time
Schr̈odinger equation (see [9] and references therein for the notation) which is obtained
as follows. We consider an orthonormal system of states

|β〉〉 = |β1, . . . , βL〉〉 〈〈γ | · |β〉〉 =
L∏
j=1

δγj βj (1.4)

and a basis in the space ofN ×N matricesEαβ :

(Eαβ)γ,δ = δα,γ δβ,δ. (1.5)

By E
αβ

k we denote the matrixEαβ acting on thekth site. The probability distribution
P({β}; t) is mapped into a ket state

|P 〉〉 =
∑
{β}
P({β}; t)|β〉〉 =


P(0, 0, . . . ,0; t)
P (0, 0, . . . ,1; t)

...

P (N − 1, N − 1, . . . , N − 1; t)

 (1.6)

and the master equation (1.3) implies the imaginary time Schrödinger equation

∂

∂t
|P 〉〉 = −H |P 〉〉 (1.7)

where

H =
L−1∑
k=1

Hk,k+1+H1+HL (1.8)

Hk,k+1 = −0αβγ δEγαk Eδβk+1 (1.9)

H1 = −LαβEβα1 and HL = −RαβEβαL . (1.10)

Above, and subsequently, the summation is invoked onany pair of repeated indices (raised,
lowered or mixed).
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In this paper we are interested in finding the stationary probability distributionPs({β})
of the master equation (1.3), i.e. the ground-state wavefunction|Ps〉〉 of the Hamiltonian
(1.8):

H |Ps〉〉 = 0. (1.11)

SinceH is an intensity matrix with positive rates the ground-state energy is zero [10].
Unless stated otherwise we consider unnormalized probability distributions. The interest in
knowing the stationary distributions of stochastic processes with boundaries is illustrated by
the extensive list of references on the subject which can be found, for example, in [5]. If
the bulk rates give a Hamiltonian with a certain algebra or superalgebra as symmetry (see
[11] for many examples) the boundary terms might break this symmetry.

Recently, Krebs and Sandow [12] have proven the following remarkable theorem. With
0, L, R matrices as above, takeN matricesDα (α = 0, 1, . . . , N − 1) andN matrices
Xα (α = 0, 1, . . . , N − 1) acting in anauxiliary vector space which satisfy the quadratic
algebra relations†

0
αβ

γ δDαDβ = DγXδ −XγDδ (γ, δ = 0, 1, . . . , N − 1). (1.12)

Consider now a ket state|0〉 and a bra state〈0| in the auxiliary space (we use the same
notation suggesting the ‘vacuum’ of quantum mechanics for reasons which will be apparent
later). If these states are chosen such that the following conditions are fulfilled

〈0|(Xα − LβαDβ) = 0 and (Xα + RβαDβ)|0〉 = 0 (1.13)

then

Ps({β}) = 〈0|
L∏
k=1

Dβk |0〉

= 〈0|
L∏
k=1

( N−1∑
µk=0

Dµkδβk,µk

)
|0〉 (1.14)

is a stationary solution of the master equation (1.3). Alternatively, let us denote byuµk
(µ = 0.1, . . . , N−1 : k = 1, . . . , L) the basis vectors in the vector space associated with the
kth site ((uµk )ν for any k) on which the matricesEβαk act (see equations (1.9) and (1.10)).
The ground-state wavefunction of the Hamiltonian (1.8) has the expression

|Ps〉〉 = 〈0|
L∏
k=1

( N−1∑
µk=0

Dµkuµk

)
|0〉. (1.15)

In fact, the Krebs–Sandow theorem is even stronger; the matrices0
αβ

γ δ , Rαβ andLαβ in (1.8)
do not have to be intensity matrices. If the Hamiltonian has an eigenvalue zero, then the
wavefunction is given by (1.15). Moreover, Krebs and Sandow have shown that the algebra
(1.12) exists, giving a representation for the matricesDα andXα. This representation fulfils
the second part of equation (1.13) but not the first.

In order to compute the ground-state wavefunction one needs the ‘vacuum’ expectation
values of monomials of the form

〈0|Dr1
µ1
Dr2
µ2
. . . Drs

µs
|0〉 (1.16)

which are obtained from equations (1.12) and (1.13). In order to find the wavefunction of
the two-site problem one considers ‘vacuum’ expectation values of monomials of degree

† Observe that the quadratic algebra (1.12) is unusual since theXα ’s appear linearly. (See [13] and [14] for a
discussion of quadratic algebras in the mathematical literature.)
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two which are obtained from a system of linear equations. The solution of this system
is not necessarily unique since the ground state might be degenerate. On completing this
exercise theL = 3 ‘vacuum’ expectation values (1.16) are considered, and so on. This
entire process, however, is more complicated than diagonalizing the Hamiltonian by brute
force, and there should be a better way of solving the problem. This is indeed possible if
the intensity matrices appearing in the Hamiltonian satisfy certain conditions. At this point,
we shall mention only what is known in theN = 2 case. In [15] Hinrichsenet al guessed
a four-dimensional representation for the matricesD0,D1, X0 andX1 for a specific choice
of intensity matrices and derived certain concentration profiles. In this specific case the
problem can also be solved directly since the Hamiltonian can be written in terms of free
fermions and it was this solution which inspired the guess. This reference is remarkable
since it is the first place where the relations (1.12)–(1.16) appear.

We shall now describe the cases where the representation theory is understood. Consider
the case where the only non-zero bulk rates are010

01 and001
10 but leave the surface (boundary)

ratesL0
1, L1

0 and R0
1, R1

0 arbitrary. This is the asymmetric exclusion model with open
boundaries. One can chooseX1 = −X0 = 1 (the c-number 1) in equations (1.12) and
(1.13) and, after a linear transformationD → Y which includes constants related to the
boundary rates, bring the relations to the form

[Y0, Y1] =
∑

γ,δ∈{0,1}
cγ δYγ Yδ +

∑
γ∈{0,1}

cγ Yγ + c01 (1.17)

where [A,B] = AB − BA and cγ δ = cδγ . The parameterscγ δ, cγ and c01 depend on the
bulk and surface rates and we also obtain

〈0|Y1 = 0 Y0|0〉 = 0 〈0|0〉 6= 0. (1.18)

The quadratic algebra with two generators (1.17) is well understood [14] and the Fock
representations defined by equation (1.18) are known [4, 9]. It was in the work of Derrida
et al [4] that Fock representations of quadratic algebras were used for the first time to find
ground-state wavefunctions and to compute correlation functions. As one can notice from
(1.17) and (1.18), the ‘vacuum’ expectation values of a monomial of degreen in Yα is
determined by the ‘vacuum’ expectation values of a monomial of degreen− 1 and one of
degreen − 2 in Yα. This implies the existence of recurrence relations between stationary
distribution functionsPs({β}) of lattices of different lengthL (which is also the degree of
the monomial in question). The first calculation of correlation functions in this model were
performed using these recurrence relations without using the algebraic approach [2, 3].

One may try to take more bulk rates than the purely diffusive or hopping ones just
described. The problem is that (1.12) withXα ’s chosen to bec-numbers gives three
equations for the two generatorsD0 andD1, while one is enough to determine all ‘vacuum’
expectation values as we have just seen. This implies relations between the rates. One
trivial case corresponds to one-dimensional representations for theDα (see [9]) when the
(connected) correlation functions vanish. Even two-dimensional representations do not exist,
since the relations on the rates obtained are incompatible with their positivity [16]. Another
possibility is to not restrict theXα ’s to bec-numbers, but (say) to take

Xα = AαγDγ + xα (1.19)

whereAαγ is an arbitrary 2×2 matrix andxα are arbitraryc-numbers. Using the arbitrariness
of the matrix elementsAαγ , Krebs et al [16] have shown that it is possible to include
more non-zero rates than just the hopping ones (001

10 and010
01) and get a two-dimensional

representation of the quadratic algebra, and hence obtain non-trivial correlation functions.
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We would like to mention that the algebraic approach can be used not only in sequential
processes described by the master equation, but also for parallel dynamics [17–19], where
the algebraic problems to be solved are identical. Also, it is well worth recalling that
matrix-product states first appeared in the literature for periodic boundary conditions in the
work of Hakim and Nadal [20], and have also appeared in various publications by Fannes
et al [21] who also considered Bethe lattices. Parallel work was done by the Köln group
[22]. The algebraic problem for periodic boundary conditions is very different since, in
this case, the wavefunction is given in terms of traces of monomials and not in terms of
inner products in Fock states. Quadratic algebras can be used in this case too (see [23–25]).
Last but not least, we would like to mention that quadratic algebras were also used for
non-stationary properties like diffusion constants [26, 27]. A review of some of the early
work on the subject can be found in [28].

In the present paper, we address the problem of stochastic processes involvingN > 2
species. We shall consider not only the case of open boundary conditions, but also, for the
first time, closed or mixed boundary conditions since the algebraic approach applies to these
cases as well. In section 2, we first review some properties of intensity matrices which we
shall use in the following sections. In section 3, we consider the problem of the linear chain
with closed ends (free boundary conditions). The boundary matricesR andL are identically
zero and we shall consider solutions whereXα = 0. This case is not only interesting on
its own, but it represents the natural first step before considering the chain with open ends
whereR andL are non-zero. (The choiceXα = 0 is compatible with equation (1.13) and
will take us to an interesting class of quadratic algebras.) This implies

0
αβ

γ δDαDβ = 0. (1.20)

We shall consider a quadratic algebra which contains only quadratic terms like in
equation (1.20) apolynomial algebra. (Obviously the algebra defined by equation (1.17) is
not one.) Equation (1.20) describes relations among monomials of degree two. The number
of relations depends on the rank of the bulk intensity matrix and, using equation (1.14), we
get the probability distribution for the two-sites case. In order to have a solution for more
sites, one needs consistency conditions which imply that the two ways of relating the cubic
monomialsDαDβDγ andDγDβDα

DαDγDβ → DγDαDβ

↗ ↘
DαDβDγ DγDβDα

↘ ↗
DβDαDγ → DβDγDα

(1.21)

give the same result. The requirement of commutativity of the above diagram imposes
constraints on the bulk rates and solves theL = 3 case. In all the examples presented in
this paper, we have checked that, once the relations (1.21) are satisfied, no supplementary
conditions on the rates arise from quartic (and in some cases) higher degree monomials.
Similar conditions appear in quantum group structures [29–31] and it is no accident that
various quantum planes or superplanes are solutions of the consistency conditions in some of
the cases that we consider. Let us observe that for the closed chain case one does not need to
take average values〈0| · · · |0〉 in equation (1.14); the ground-state wavefunctions (the ground
state is often degenerate) and therefore the probability distributions are thecoefficients of
the independent monomials. Let us observe that the early applications [20–22] of matrix-
product states for periodic boundary conditions, in which the Hamiltonian was not given by
intensity matrices, have used polynomial algebras (1.20) which have representations with
finite traces. The existence of finite traces implies supplementary conditions on the0

α,β

γ,δ
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in equation (1.20) besides the associativity conditions (1.21) [25]. In section 3 we also
answer the following question: If the ground state can be obtained by the present algebraic
methods, is the Hamiltonian integrable? We shall show that the answer is, in general, no.

In section 4, we consider the case where the left end of the linear chain is open (Lαβ 6= 0)
and the right end is closed (Rαβ ). We again takeXα = 0 but now we need to add the condition

Lβα〈0|Dβ = 0 (α = 0, 1, . . . , N − 1) (1.22)

to equation (1.20), which comes from equation (1.13). This implies new consistency
conditions between the bulk and the left-boundary intensity matrices, which come from
the equations

Lβα〈0|DβDγ = 0. (1.23)

The consistency conditions depend on the rank of theL matrix. Note that in this case one
has to drop the|0〉 symbol and retain the〈0| symbol in equation (1.14), where the stationary
probability distribution is expressed. Again there are no Fock representations in this case.

Fock representations appear in section 5, where we consider the linear chain with both
ends open. This problem is much more difficult than the preceding ones. We, therefore,
limit ourselves to the caseN = 3 only, since this case is complex enough and significantly
different from theN = 2 case. We also restrict our attention to the case of diffusion only
(in the bulk), i.e. the only non-zero bulk rates are0αββα. We look for representations for the
case where theXα ’s arec-numbers. To our knowledge, only one example of this kind was
known up to now [5]. It is possible to perform a linear transformation to bring (1.12) and
(1.13) into the form

[Yα, Yβ ] =
∑

γ,δ∈{0,1,...,N−1}
c
γ δ

αβYγ Yδ +
∑

γ∈{0,1,...,N−1}
c
γ

αβYγ + cαβ (1.24)

where

c
γ δ

αβ = cδγαβ = −cγ δβα c
γ

αβ = −cγβα cαβ = −cβα (1.25)

with N = 3, and the Fock conditions derived from equation (1.13). We review the properties
of the algebra (1.24) and stress that their properties are essentially different ifN > 2. We
also show that the Fock conditions forN > 2 are in general too numerous. This leads to a
careful separation of cases depending on the rank of the boundary intensity matrices.

In section 6, we show that if all the minors of the boundary matrices are non-zero, one
can have representations of the quadratic algebra of dimension at most two with the bulk
and boundary rates lying on some algebraic variety. In section 7, we consider the case
in which only one minor ofLαβ and one ofRαβ are non-zero. We give the representations
of the algebra in this case. Other cases (three or more minors non-zero, for example)
are not presented since the paper is long enough even without them. In the appendix,
we present simple physical processes where the formalism may be applied. (The results
in the different sections of the paper may be used for several other applications.) We
consider the problem of spontaneous symmetry breaking in a two-species exclusion model
with asymmetric diffusion proposed by Evanset al [5]. More boundary and bulk rates are
considered than in the original model. This extension might allow a better understanding
of the physics of the problem.

In section 8, we consider the case in which all the principal cofactors are zero (the
boundary intensity matrices have rank one). We are going to give four examples for this
case.

This is a difficult paper to read since there is no physical intuition which facilitates the
anticipation of, or allows us to guess, the results obtained. We shall permit ourselves to
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advise the reader on how to get through the paper. If one is interested only in quadratic
algebras, examples of polynomial algebras (1.20) are found in section 3. Several examples of
more general quadratic algebras (1.24) are found in section 7. If one is interested in physical
applications, one should start with section 2 and decide what type of physical problems one
is interested in. If one looks to problems with one or two closed ends, sections 3 and 4 are
enough. If one is interested in problems with open ends, the reader should know that we
have considered only the case where the number of particles is conserved in the bulk. Next
she/he should know which type of boundary intensity matrices are dictated by the physical
problem and compute their rank. This is a crucial point. If the boundary intensity matrices
have non-zero minors, she/he should consult section 6 and be aware that the present method
is unlikely to be of any help. If, however, some or all the cofactors are zero, the methods
presented in this paper might be very useful.

The reader who might be tired of this long introduction is invited to go directly to
section 9, where a guide to finding the new results is presented along with a number of
open questions.

2. Some properties of intensity matrices

An N × N matrix M whose elementsMij are such that the sum of all its entries on each
column vanishes, i.e.

N−1∑
i=0

Mij = 0 (j = 0, 1, . . . , N − 1) (2.1)

is called anI-matrix. I-matrices are closed under multiplication and form an algebra.
For stochastic problems, one considers I-matrices which have to satisfy the further

restriction that the off-diagonal elements are real and non-negative, since they are interpreted
as probability rates of certain processes. Such anN ×N matrixM with real entriesMij is
called anintensity matrixif

(i) all its off-diagonal entries are non-negative,Mij > 0, i 6= j ;
(ii) and the diagonal elements are negative with

Mii = −
∑
i 6=j

Mij . (2.2)

For any matrixA with entriesAij , if the Laplace row expansion of a determinant is
written as

∑
j AijAkj = δik detA whereAij is the cofactor corresponding to the (i, j )th

element ofA. An important property of any zero column-sum matrix is that the cofactors
for each column are equal in magnitude. (This can be proved as follows. The difference
of any two successive cofactors down any column of an × n matrix A, Ai,j − Ai+1,j , is
a sum of determinants of two(n − 1) × (n − 1) matrices which differ only in one row,
which can thus be expressed as the determinant of the sum of these matrices which is a
zero column-sum matrix.) In the case of intensity matrices, all the cofactors have the same
sign. Let us denote the column-j cofactor of an intensity matrixM by the corresponding
symbol in calligraphic fontMj .

It, therefore, follows that a system of linear equations
N−1∑
n=0

Mmnxn = 0 (2.3)

has a solution given by

xn = ξMn (2.4)
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for any constant (independent ofn) ξ if the rank ofM is N − 1.
Consider two intensity matricesF andG, and their sum

E = F +G (2.5)

which is also an intensity matrix. The following identity is true forN = 1, 2 and 3 only:

N−1∑
m=0

(Fnm −Gnm)Em = (N − 1)
N−1∑
m=0

(FnmGm −GnmFm) (2.6)

where as noted earlier, the calligraphicE , F , G with subscriptm denotes the cofactors of
E, F , G for themth column. The last identity is useful for the three-species case. The
identity (2.6) which can be easily proved is probably new. Since we are going to use them
often in the next few sections, we give the expressions for the three distinct cofactors of a
3× 3 intensity matrixF with matrix elementsFmn :

F0 = F 1
0F

2
1 + F 2

0F
1
0 + F 2

0F
1
2

F1 = F 0
1F

2
0 + F 2

1F
0
1 + F 2

1F
0
2 (2.7)

F2 = F 0
2F

1
0 + F 1

2F
0
2 + F 1

2F
0
1 .

3. Steady states for a linear chain with closed ends (ground states for quantum spin
chains with free boundary conditions)

As mentioned in the introduction, we consider ground-state wavefunctions of the form

|Ps〉〉 =
L∏
k=1

( N−1∑
µk=0

Dµkuµk

)
(3.1)

where the matricesDµ satisfy equations (1.20) and the consistency conditions (1.21). It is
important to note that unlike equation (1.15) we do not use the matrix elements (no〈0| or |0〉
symbols are necessary). The coefficients of the independent words (independent monomials
in theD matrices) give the different ground states. If the ground state is not degenerate
one has only one independent monomial. The type of wavefunctions we get depends on the
rank of the bulk intensity matrix0αβγ δ . Let us first consider the case where the rank is the
maximum possible, i.e.N2 − 1, and all principal minors are non-zero. We denote byGαβ
the cofactors of0αβγ δ (see section 2). Using equation (2.4) we get

DαDβ = GαβGγ δ DγDδ. (3.2)

There are two ways in which the cubic monomialDαDβDγ can be related toDµDρDσ :

DαDβDγ = GαβGµν DµDνDγ = GαβGµν
Gνγ
Gρσ

DµDρDσ (3.3a)

DαDβDγ = GβγGνσ DαDνDσ = GβγGνσ
Gαν
Gµρ

DµDρDσ . (3.3b)

Comparing equations (3.3a) and (3.3b) (and settingρ = ν) we get

GαβGνγ = GανGβγ (3.4)

and hence the condition on the cofactors (on settingν = α andβ = γ ) is

Gαβ = ±
√
GααGββ = Gβα. (3.5)
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The+(−) is taken ifN is odd (even). This implies thatDα can be taken asc-numbers:

Dα = ξ
√
Gαα (3.6)

whereξ is a constant. The ground state is unique and the (connected) correlation functions
manifestly zero.

The whole structure of the possible solutions for the ground- state wavefunction depends
on the rank of the bulk intensity matrix0αβγ δ . From now on we shall restrict ourselves to
the casesN = 2, 3 only.

In what follows, we shall be able to find many examples of ground-state wavefunctions
using polynomial algebras. Does this imply the full integrability of the Hamiltonian? One
could be tempted to think so. As we are going to see, the answer in general is negative. Exact
integrability requires more than an analytical expression for the ground-state wavefunctions.
In order to clarity this point it is useful to remind the reader of some mathematical tools.

In certain cases, theek defined by

ek := Hk,k+1 (3.7)

whereHk,k+1 is the Hamiltonian density given in equation (1.9), satisfy the relations of a
Hecke algebra:

ekek±1ek − ek = ek±1ekek±1− ek±1

[ek, ej ] = 0 for |k − j | > 2 (3.8)

e2
k = (q + q−1)ek.

In this case, one can find a spectral parameter dependent solutionŘ(u) of the Yang–Baxter
equation via ‘Baxterization’ [32, 33]. One can check that the generatorsek satisfy further
relations among themselves which define various quotients of the Hecke algebra [34]. For
our purposes, it is sufficient to state that theHk,k+1 belong to such quotients that are classified
by a pair of natural numbers (P,M). For each quotient labelled by (P,M) the Hamiltonian
whose density is given by the appropriateek defines a spin chain [35] withUqsu(P |M)
(which is the Schur–Weyl dual of the (P,M) Hecke quotient) as its symmetry algebra. (For
further details, see [11].)

A more general criterion for integrability at the level of Hamiltonian densities was
introduced by Reshetikhin [36] for the case ofR-matrices whose dependence on the spectral
parameter is of difference type. By expanding theR and row transfer matrices in powers
of the spectral parameter, it was shown to be necessary that the Hamiltonian densitiesek
satisfy the following relation

[ek + ek+1, [ek, ek+1]] = Wk −Wk+1 (3.9)

whereWk is a tensor product of identity matrices at all sites on the chain and an arbitrary
matrix at thekth site. We use these criteria as tests for integrability for a few examples.
• N = 2. We now consider theN = 2 case. We shall on occasion refer to the state ‘1’

as that denoting the presence of a particle and the state ‘0’ to its absence. If all the minors
are non-zero, and the intensity matrix is of maximal possible rank (i.e. 3) equation (3.6)
applies. We consider the cases where the rank is less than 3. Let us first consider the case

000
10 = 000

01 = 000
11 = 001

00 = 010
00 = 011

00 = 0 (3.10)

where the bulk intensity matrix effectively reduces (from a 4×4) to a 3×3 matrix with rows
and columns labelled by (1,0), (0,1) and (1,1). LetG ′1,0, G ′0,1 andG ′1,1 be the cofactors of
this new intensity matrix. In order to have a polynomial algebra we must have the condition

G ′1,0 = G ′0,1 (3.11)
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and the algebra is

D1D0 = D0D1 =
G ′1,0
G ′1,1

D2
1. (3.12)

The ground state forL sites is now doubly degenerate. One state corresponds toDL
0

and the other contains all the monomials which have at least oneD1, and can be brought
by equation (3.12) to be proportional toDL

1 .
Next we consider the situation where we have only diffusion of particles and their

annihilation if two particles are on neighbouring sites. This is attained by choosing the
following rates to vanish (the rest being non-zero):

000
10 = 000

01 = 000
11 = 001

00 = 010
00 = 001

11 = 010
11 = 0. (3.13)

In this case the algebra is

D0D1 = q2D1D0 D2
1 = 0 (3.14)

where

q =
√
010

01

001
10

. (3.15)

If we choose the time scale such that010
010

01
10 = 1, the set ofHk,k+1 satisfies the relations

for the (1,1) quotient of the Hecke algebras centralizingUq(su(1|1)). The ground state for
L sites is doubly degenerate corresponding to the wordsDL

0 andD1D
L−1
0 .

Yet another example of an intensity matrix which gives rise to a quadratic algebra is
−000

10 0 010
00 0

0 −001
11 0 011

01
000

10 0 −010
00 0

0 001
11 0 −011

01

 (3.16)

which gives the following quadratic algebra:

D0D1 = 1

q2
and D1D0 = q2D2

0

where q2 = 000
10

010
00

= 001
11

011
01

(3.17)

after solving for the associativity constraints coming from the cubic terms.
Yet another possibility is to set more rates to zero, in addition to those which led to

equation (3.14). Upon setting011
00, 011

01 and011
10 to zero as well, which means we are only

considering diffusion, we are led to

D0D1 = 010
01

001
10

D1D0. (3.18)

The ground state is now (L+ 1) times degenerate—each wavefunction has a given number
of D1’s and the coefficients of the tensor products ofu

(µ)

k in equation (3.1) correspond to
the q-deformation of the symmetrizer corresponding to the Young diagram with one row

andL boxes [11], withq =
√
010

01/0
01
10. The quadratic relation

D0D1 = 0 (3.19)

corresponds not only to the case where001
10 is the only non-zero rate, but more generally

001
αβ is non-zero for allα, β. Again the ground state is (L + 1) times degenerate. Since
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our intention is to generalize the problem toN > 2, it is useful to present visually the
non-zero matrix elements which correspond to the different quadratic relations. The rows
and columns below are labelled (0, 0), (0, 1), (1, 0) and (1, 1) consecutively.
� � � �
� � � �
� � � �
� � � �

 equation(3.6)


· · · ·
· � � �
· � � �
· � � �

 equation(3.12)


· · · �
· � � �
· � � �
· · · �

 equation(3.14)


� · � ·
· � · �
� · � ·
· � · �

 equation(3.17)


· · · ·
· � � ·
· � � ·
· · · ·

 equation(3.18)


· � · ·
· � · ·
· � · ·
· � · ·

 equation(3.19).

We could not obtain algebras with non-scalarD0 andD1 for any other choice of locations
in the intensity matrix for the non-zero rates than those depicted above.
• N = 3. We now consider theN = 3 case. We are not going to list all the possible

quadratic relations for the two-site problem which are compatible with the three-site problem
(i.e. the cubic relations are compatible with the associative application of the quadratic
relations) but list a few examples which do. We shall, in some cases, interpret the state
variables 1, 2, 0 as those of two species of particles and holes, respectively. First, we
consider the case in which the two-site bulk intensity matrix decouples into three intensity
matrices (the other rates being zero):(−001

10 010
01

001
10 −010

01

) (−002
20 020

02
002

20 −020
02

)
and (−(000

21+ 000
12) 012

00 021
00

000
12 −(012

00+ 012
21) 021

12
000

21 012
21 −(021

00+ 021
12)

)
. (3.20)

We denote byI00, I12 andI21 the cofactors of the 3× 3 intensity matrix. The quadratic
relations obtained are

D0D1 = γD1D0 D2D0 = δD0D2

D1D2 = βD2
0 αD2D1 = βD2

0. (3.21)

The cubic relations obtained by considering words in theD’s of degree three are compatible
with the quadratic relations provided

α = I12

I21
= γ−2 β = I12

I00
γ = δ = 010

01

001
10

= 002
20

020
02

. (3.22)

There are (2L+ 1) wavefunctions with energy eigenvalue zero. They are given in terms of
the monomials

DL−m
0 Dm

1 DL−n
0 Dn

2. (3.23)

This gives an explanation as to why it was possible to calculate the probability distribution
exactly in [37] for the particular case where interchange of particles is forbidden (012

21 =
021

12 = 0). Interpreting the matrix entries in equation (3.20) as transition rates involving
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two species of particles 1 and 2 we notice that the difference in the number of particles of
types 1 and 2 is conserved under this stochastic dynamics.

We now consider the intensity matrix of the block diagonal form

000
00 001

00 002
00 0 0 0 0 0 0

000
01 001

01 002
01 0 0 0 0 0 0

000
02 001

02 002
02 0 0 0 0 0 0

0 0 0 010
10 011

10 012
10 0 0 0

0 0 0 010
11 011

11 012
11 0 0 0

0 0 0 010
12 011

12 012
12 0 0 0

0 0 0 0 0 0 020
20 021

20 022
20

0 0 0 0 0 0 020
21 021

21 022
21

0 0 0 0 0 0 020
22 021

22 022
22


(3.24)

and we denote the cofactors of the 3× 3 block containing0iiii by Gα(i), whereα = 0, 1, 2
labels the (α + 1)th column within each block. The algebra is defined by the six relations

DαDβ = fβ

fα
D2
α (3.25)

where

f1

f0
= G

1
(0)

G0
(0)

= G
1
(1)

G0
(1)

f0

f2
= G

0
(2)

G2
(2)

= G
0
(0)

G0
(2)

(3.26)

f2

f1
= G

2
(1)

G1
(1)

= G
2
(2)

G1
(2)

G0
(0)G1

(1)G2
(2) = G1

(0)G2
(1)G0

(2). (3.27)

The ground state is threefold degenerate, the independent words beingDL
0 , DL

1 andDL
2 .

This degeneracy arises since the type of particle located at the first site (0, 1, 2) is unchanged
by the stochastic dynamics.

An interesting example with four quadratic relations is

001
10D0D1 = 010

01D1D0

012
21D1D2 = 021

12D2D1

020
02D2D0 = 002

20D0D2

D2
1 = 0. (3.28)

These relations are obtained if the only non-zero rates are those that appear in (3.28) and
011
αβ(α, β ∈ {0, 1}). In order to find the degeneracy of the ground state, notice that if we set

0
αβ

βα =
1

0
βα

αβ

(α 6= β) and
001

10

010
01

= 002
20

020
02

= 012
21

021
12

= q2 (3.29)

we obtain the (2, 1) quotient of the Hecke algebra [11] and, by Schur–Weyl duality, the
Hamiltonian isUq(su(2|1)) symmetric. The ground-state wavefunctions are proportional to
the monomials symmetrized using the relations (3.28) and (3.29) and are, therefore, given
by the representation of the superalgebra which corresponds to a Young diagram withL

boxes in one row [38].
A physically important example is the case in which we consider hopping and

interchange of particles; we set the rates011
αβ to zero in the previous example to get the

three relations

D0D1 = 010
01

001
10

D1D0 D1D2 = 021
12

012
21

D2D1 D2D0 = 002
20

020
02

D0D2. (3.30)
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We have checked whether the Hamiltonian thus defined satisfies the necessary condition as
prescribled by Reshetikhin (equation (3.9)) for being integrable. We found that in order to
be so, the rates must satisfy the relations (3.29) and we get the (3, 0) quotient of the Hecke
algebra and the Hamiltonian isUq(su(3)) symmetric. This result is important because it
shows that, although the ground state of the Hamiltonian can be obtained by algebraic means,
the spectrum of the Hamiltonian cannot, unless supplementary conditions are satisfied. We
have also checked other cases with the same result. If the relations (3.29) are satisfied, the
ground states again give the representation ofUq(su(3)) which corresponds to the Young
diagram withL boxes in one row [38].

We can also consider the case where the only rates that are non-zero are001
10, 010

01, 002
20

and020
02. The only two relations that survive are

001
10D0D1 = 010

01D1D0 and 002
20D0D2 = 020

02D2D0 (3.31)

and the degeneracies are huge since any sequence of the state indices 1 and 2 is invariant
under the dynamics and can be computed using the results of [39].

Finally, one can have only one relation

DiDj = 0 (3.32)

if the only non-zero rates are0i,jα,β for anyα, β.
Since we have only looked at particular cases, it is most likely that we have not exhausted

all possible quadratic algebras arising from 9×9 intensity matrices. We have not been able
to find other examples which give non-trivial (non-scalar) representations for the relations
emerging from a choice of intensity matrix. The rules of the game are, however, very simple
and can be applied by the reader to find other examples. In the 9× 9 intensity matrix, one
takes several diagonal blocks of smaller intensity matrices with non-zero rates and columns
of possibly non-zero rates of the following form:



.

Notice that there are no rectangular boxes which span entire rows of the matrix0 above.
This intensity matrix0 gives quadratic relations which then have to be checked for

consistency for the three-site case. We can do the same with another intensity matrix
0′ := Pµν0Pµν , wherePµν is a permutation matrix,

Pµν(uµk ⊗ uνk+1) = (uνk ⊗ uµk+1)

whereuµk,νk are defined before equation (1.15). The same procedure applies for any number
of speciesN .

To sum up, we have shown that there are a number of quadratic algebras which allow the
computation of the ground-state wavefunction. What is missing is a complete classification
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of the algebras. What is also missing is an understanding of the origin of the degeneracies.
Are the ground-state wavefunctions some representations of some algebra? In the special
case where the Hamiltonian densities are generators of a Hecke algebra, the answer is
known, but now in the general case.

We would also like to emphasize that the ground-state wavefunctions thus computed
are non-trivial in the sense that connected correlations functions in these states are non-
zero. One simple example is already known. This is given in equation (3.18) [40]. The
method used in [40] to compute the correlation functions was different. Other cases can be
considered using the results of this section.

4. Linear chain with left end open and right end closed

As discussed in section 1, the ground-state wavefunction is given by the expression

|Ps〉〉 = 〈0|
L∏
k=1

( N−1∑
µk=0

Dµkuµk

)
(4.1)

whereDµ satisfy one of the polynomial algebras described in the last section and a new
condition (see equation (1.22))

N−1∑
β=0

Lβα〈0|Dβ = 0 (4.2)

where Lβα is an intensity matrix with cofactorsLβ . Notice that as compared to
equation (1.15) we use only the bra〈0| symbol and no ket|0〉 symbol. If the ground
state is degenerate the coefficients of the independent bra vectors (monomials ofD applied
to 〈0|) will give the independent wavefunctions. If the ground state is not degenerate one
has only one independent bra vector. We consider the casesN = 2 andN = 3 only.
The following conditions on theD matrices are obtained depending on the structure of the
boundary intensity matrix. In each case, only the non-zero rates are written down.
• N = 2
(i)

〈0|D1 = L0
1

L1
0

〈0|D0 (L1
0, L

0
1 6= 0) (4.3)

(ii)

〈0|D1 = 0 (L1
0 6= 0) (4.4)

(iii)

〈0|D0 = 0 (L0
1 6= 0). (4.5)

• N = 3. For the case where at least one principal cofactor, for exampleL0, is non-zero

〈0|Dα = LαL0
〈0|D0 (α = 1, 2) (4.6)

and one obtains two constraints. If all the principal cofactors are zero, only two rates are
non-zero. We can distinguish the following cases:

(i)

〈0|D1 = L0
1

L1
0

〈0|D0 L1
0, L

0
1 6= 0 (4.7)
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(ii)

〈0|D2 = L0
2

L2
0

〈0|D0 L2
0, L

0
2 6= 0 (4.8)

(iii)

〈0|D2 = L1
2

L2
1

〈0|D1 L1
2, L

2
1 6= 0 (4.9)

(iv)

〈0|D1 = 0 (L1
0+ L1

2) 6= 0 (4.10)

(v)

〈0|D0 = 0 (L0
1+ L0

2) 6= 0 (4.11)

(vi)

〈0|D2 = 0 (L2
0+ L2

1) 6= 0. (4.12)

Notice that for the last six cases one has only one constraint. The conditions (4.3)–(4.12)
have to be compatible with the polynomial algebras. In this way one can, in some cases,
find relations between the bulk rates only. In most cases the degeneracy of the ground state
is lifted.

The marriage of the bulk algebra with the boundary conditions (4.3)–(4.12) is a
straightforward mathematical exercise. Therefore, we shall confine ourselves to models
of asymmetric diffusion where the only non-zero rates are0

αβ

βα and give examples of how
the concentration profiles can be computed. These are the cases for which the relevant
algebras are given in equation (3.18) forN = 2 and equation (3.30) forN = 3.

We shall start with theN = 2 case. We have the algebra

D0D1 = q2D1D0 (4.13)

and one of the conditions (4.3)–(4.5). The conditions (4.4) and (4.5) give a trivial ground
state:〈0|DL

0 (4.4) or 〈0|DL
1 (4.5). We shall rewrite equation (4.3) as follows:

〈0|D1 = µ〈0|D0. (4.14)

There are no constraints connectingq2 andµ. Assume thatD1 indicates the presence of
a particle on any particular site andD0 the lack of one, i.e. holes. The concentration of
particles at a distancek from the left boundary for a chain of lengthL is [4]

c(k) = 1

ZL
〈0|Ck−1D1C

L−k (4.15)

where

ZL = 〈0|CL C = D0+D1. (4.16)

Obviously, equation (4.15) should be understood as the ratio of the coefficients of the same
bra vector. A straightforward calculation gives

c(k) = 1

1+ q2(1−k)/µ
. (4.17)

The connected two-point correlation function

c(k, l) = 1

ZL
〈0|(Ck−1D1C

l−k−1C1C
L−l)− c(k)c(l) (4.18)

vanishes.
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An interesting case occurs for the algebra

D1D0 = 0 (4.19)

which corresponds to001
10 = 0 where we consider the boundary conditionL0

1 = 0
(equation (4.4)). Upon inserting these conditions into equation (4.15) we obtain

c(k) = 〈0|
∑k−1
j=1 D

j

0D
L−j
1

〈0|∑L
j=1D

j

0D
L−j
1

(4.20)

and we cannot go any further because our algebraic rules do not allow us to evaluate this
expression. We leave it as an exercise to the reader to find the physical reasons why the
method appears not to work in this case, and to do the calculation properly.

We now consider theN = 3 states problem and illustrate the method in the case of
equation (3.30), which we rewrite for convenience

q0D1D2 = D2D1 q1D2D0 = D0D2 q2D0D1 = D1D0 (4.21)

where

q0 = 012
21

021
12

q1 = 020
02

002
20

q2 = 001
10

010
01

. (4.22)

We consider the boundary conditions (4.6) and assume all the rates in (4.22) to be non-zero.
Settingµα := Lα/L0, we have

〈0|D1 = µ1〈0|D0 and 〈0|D2 = µ2〈0|D0. (4.23)

As we shall now show, consistency conditions on the rates show up. Let us first compute

q0〈0|D1D2 = q0µ1〈0|D0D2 = q0q1µ1〈0|D2D0 = q0q1µ1µ2〈0|D2
0

〈0|D2D1 = µ2〈0|D0D1 = (µ2/q2)〈0|D1D0 = (µ1µ2/q2)〈0|D2
0. (4.24)

From the first equation in (4.21) and equations (4.24) we get

q0q1q2 = 1. (4.25)

Note that this condition constrains only the bulk rates. The concentration profiles for
particles ‘1’ and ‘2’ (‘0’ denotes vacancies) can easily be computed [5] as

c1(k) = 1

ZL
〈0|Ck−1D1C

L−k c2(k) = 1

ZL
〈0|Ck−1D2C

L−k

ZL = 〈0|CL C = D0+D1+D2. (4.26)

Using equations (4.21), (4.23) and (4.25) we obtain

c1(k) = µ1q
1−k
2

1+ µ1q
1−k
2 + µ2q

k−1
1

c1(k)

c2(k)
= µ1

µ2
qk−1

0 . (4.27)

We are not aware of the existence of another method which would give us the expressions
(4.27). The connected two-point correlation function is zero.
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5. The open chain three-state exclusion models

This is a much more difficult problem. We limit our investigation to exclusion models in
which the only non-vanishing rates in the bulk are

gαβ := 0αββα (5.1)

and make the assumption that the matricesXµ in equation (1.12) arec-numbers, which we
shall callxµ. As we shall see below, the choicexµ = 0 is possible for pathological choices
of boundary conditions only. The choice (5.1) is not only justified by the interest in these
physical processes but, as shown later (see the discussion after equation (5.24)) in this way
one obtained quadratic algebras which are understood [13, 14].

We are looking, therefore, at Fock representations of the algebra

g01D0D1− g10D1D0 = x0D1− x1D0

g12D1D2− g21D2D1 = x1D2− x2D1 (5.2)

g20D2D0− g02D0D2 = x2D0− x0D2

with boundary conditions on the states〈0| and |0〉
〈0|(xν − Lµν Dµ) = 0 and (xν + Rµν Dµ)|0〉 = 0. (5.3)

As shown in [9], forN = 2, one has Fock representations of the algebra for any bulk and
boundary rates. The situation is going to be very different forN = 3. The reason is that
the number of boundary conditions determined by the matricesLνµ andRνµ is, in general,
too large. For each ofL andR one has to consider all the cases enumerated in the previous
section (see equations (4.6)–(4.12)). We now make some transformations which exploit the
fact that thexµ are still free parameters.

Let us first consider words of length 1:

〈0|Dµ|0〉 = δµ. (5.4)

From equation (5.3), it follows that

(Lµν + Rµν )δµ = 0 (5.5)

and

xν = 1
2(L

µ
ν − Rµν )δµ. (5.6)

We have to keep in mind that

Bνµ = Lνµ + Rνµ (5.7)

is an intensity matrix with cofactorsBµ. This implies (using equations (2.3)–(2.6)) that

δµ = ξBµ (5.8)

and

xν = 1
2ξ(L

µ
ν − Rµν )Bµ = ξ(LµνRµ − Rµν Lµ). (5.9)

Here ξ is an arbitrary parameter andRµ(Lµ) are the cofactors of the intensity matrix
Rµν (L

µ
ν ). The expressions for the various cofactors can be obtained using equation (2.7).

SinceRµν andLµν are intensity matrices, it follows from equation (5.3) that

2∑
ν=0

xν = 0. (5.10)
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It is interesting to note that if we have a Fock representation, the ratio of the currents
of particles 1 and 2 is already known. It is easy to show that

Ji = xi 〈0|C
L−1|0〉

〈0|CL|0〉 i = 1, 2 (5.11)

where

C =
2∑

µ=0

Dµ. (5.12)

This implies

J1

J2
= x1

x2
(5.13)

wherex1/x2 is given by the boundary conditions (see equation (5.9)).
In deriving (5.11) we have used the following expression for the current density [4, 5]

j1 = g10D1D0+ g12D1D2− g01D0D1− g21D2D1

= − (x0+ x2)D1+ x1(D0+D2) = x1C (5.14)

and a similar equation forj2. We also used the definition

Ji = 〈ji〉. (5.15)

It is easy to find the one-dimensional representations of the algebra (5.2). Using
equation (5.4), we get the following conditions on the rates

g01− g10 = y0− y1

g12− g21 = y1− y2

g20− g02 = y2− y0 (5.16)

where

yµ = xµ

δµ
(5.17)

are given by the boundary conditions (see equations (5.8) and (5.9)). Notice that
equations (5.16) give one relation between the bulk rates,

g01+ g12+ g20 = g10+ g21+ g02 (5.18)

and two relations between boundary and bulk rates.
Before we start looking for the cases in which the Fock representations of the algebra

(5.2) exist, it is useful to bring it into a different form. We denote

u0 = y1− y2

g21
+ 1− q0 u1 = y2− y0

g02
+ 1− q1 u2 = y0− y1

g10
+ 1− q2 (5.19)

and also

v10 = 1− q2+ (y0/g10) v01 = 1− q2− (y1/g10)

v21 = 1− q0+ (y1/g21) v12 = 1− q0− (y2/g21)

v02 = 1− q1+ (y2/g02) v20 = 1− q1− (y0/g02). (5.20)

The qµ and yν in the above are defined in equations (4.22) and (5.17), respectively. We
also define new generatorsHµ

Dµ = δµ(1+Hµ). (5.21)
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With these new definitions, the algebra relations and the action of the generators on the
vacuum are

q2H0H1−H1H0 = u2+ v10H1+ v01H0

q0H1H2−H2H1 = u0+ v21H2+ v12H1

q1H2H0−H0H2 = u1+ v02H0+ v20H2 (5.22)

with

〈0|H0|0〉 = 〈0|H1|0〉 = 〈0|H2|0〉 = 0 (5.23)

(L0/δ0)〈0|H1 = (L1/δ1)〈0|H0 (L0/δ0)〈0|H2 = (L2/δ2)〈0|H0

(R0/δ0)H10〉 = (R1/δ1)H0|0〉 (R0/δ0)H2|0〉 = (R2/δ2)H0|0〉. (5.24)

The algebra (5.22) is of a special case of those defined in equation (1.24) [13, 14]. For
the latter, one can show that if the coefficients are generic, then forN > 3 the algebra is
finite dimensional. For example, there are 28 independent monomials forN = 3. Therefore,
one can already understand that theN = 3 problem is different from the one forN = 2.
The next point to note is the role of boundary rates forN = 3. They appear explicitly
in equation (5.24) but also through theyµ in the coefficients of the algebra (5.22) (see
equation (5.20)).

In the next section we ask the question if the algebra (5.22) has representations in the
generic case (when the principal cofactors of the boundary matrices are non-zero) aside
from the one-dimensional one, which corresponds touµ = 0 andHµ = 0. We shall show
that one can have representations of dimension at most two. In general, it is not possible
to have higher dimensional representations because the number of constraints coming from
the algebra relations is larger that the number of boundary and bulk rates. In the subsequent
sections, we will make a systematic investigation of the cases where some or all of the
principal minors vanish.

6. Generic three-state exclusion model: boundary intensity matrices have non-zero
minors

In this section we consider the question when the algebra (5.22) has Fock representations
defined by equations (5.23)–(5.24) under the assumption that theRµ andLµ are non-zero.
This is a very technical section and the reader not interested in the method of answering
the question can proceed directly to the end of the section where the result is given. For
our specific purpose it is convenient to rewrite the algebra in a slightly different way using
new notation.

Let

qν = Q2
ν λi = LiL0

δ0

δi
µi = RiR0

δ0

δi
α2
i =

λi

µi
(ν = 0, 1, 2; i = 1, 2)

(6.1)

and instead of the generatorsHν useLν defined as follows:

D0 = δ0(1+ L0) Di = δ1(1+ λ1L1) D2 = δ2(1+ µ2L2). (6.2)

The algebra relations are

Q2
2L0L1− L1L0 = m2+ n10L1+ n01L0

Q2
0L1L2− L2L1 = m0+ n21L2+ n12L1

Q2
1L2L0− L0L2 = m1+ n02L0+ n20L2 (6.3)
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and the conditions for a Fock representation are

〈0|L1 = 〈0|L0 〈0|L2 = α2
1〈0|L0

L2|0〉 = L0|0〉 L1|0〉 = α2
2L0|0〉

〈0|Lν |0〉 = 0 (ν = 0, 1, 2). (6.4)

This algebra depends on 14 parameters, and after setting the time scale we are effectively
left with 13. For the physical problem, themν andnµν are related to the rates:

m0 = 1

λ1µ2

(
y1− y2

g12
+ 1−Q2

0

)
m1 = 1

µ2

(
y2− y0

g02
+ 1−Q2

1

)
m2 = 1

λ1

(
y0− y1

g10
+ 1−Q2

2

)
(6.5)

and

n10 = 1−Q2
2+

y0

g10
n01 = 1

λ1

(
1−Q2

2−
y1

g10

)
n02 = 1

µ2

(
1−Q2

1+
y2

g02

)
n20 =

(
1−Q2

1−
y0

g02

)
n21 = 1

λ1

(
1−Q2

0+
y1

g21

)
n12 = 1

µ2

(
1−Q2

0−
y2

g21

)
. (6.6)

At this point two strategies are possible. One can look for vacuum expectation values of
words of different lengths and find consistency conditions for the 14 parameters; or one can
look for matrix representations of the algebra and in this way obtain consistency conditions
among the parameters. We shall do both—we shall take matrix representations and indicate
which of the consistency conditions on the matrix elements also come from specific vacuum
expectation values of words of a given length. In order to do so, it is convenient to work
with parameterspµν andrµ introduced below instead of themµ andnµν introduced earlier:

m0 = Q0α1α2N(Q0/(α1α2))r0

m1 = Q1α1N(Q1α1)r1

m2 = Q2α2N(Q2α2)r2

n01 = Q2α2N(Q
2
2α2)p01

n10 = Q2N(Q
2
2α2)p10

n20 = Q1N(Q
2
1α1)p20

n02 = Q1α1N(Q
2
1α1)p02

n21 = Q0α2N(Q
2
0/(α1α2))p21

n12 = Q0α1N(Q
2
0/(α1α2))p12. (6.7)

The constraints on the parameters we shall obtain in what follows look much simpler in
terms of the new parameters. In equations (6.7) and in what follows we use the notation

M(x) = x + 1

x
and N(x) = x − 1

x
. (6.8)

We consider a three-dimensional representation of the algebra equation (6.3). We make
this choice since we are going to prove that, in the generic case, the two-dimensional
representation is the largest we can have. Using the boundary conditions (6.4) we can bring
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the matrix representation of the generatorsLµ to a tridiagonal form by means of a similarity
transformation by an orthogonal matrix, just as was done for theN = 2 case in [9]. One
can show that with

〈0| = (1, 0, 0) and |0〉 = (1, 0, 0)T

(where T denotes transposition) the generators then take on the expressions

L0 =
 0

√
f1 0√

f1 c
(0)
1

√
f2

0
√
f2 c

(0)
2


L1 =

 0
√
f1 0

α2
2

√
f1 α1c

(1)
1

√
f2/Q

2
2

0 α2
2Q

2
2

√
f2 α2c

(1)
2


L2 =

 0 α2
1

√
f1 0√

f1 α1c
(2)
1 α2

1Q
2
1

√
f2

0
√
f2/Q

2
1 α1c

(2)
2

 . (6.9)

Notice that a one-dimensional representation is obtained iff1 = 0, a two-dimensional
one if f2 = 0, f1 6= 0 and a three-dimensional one iff1 6= 0, f2 6= 0. fi andc(j)i are still
to be determined from the algebra relations, the Fock conditions (6.4) having already been
taken into account.

We now insert the 3× 3 matrices (6.9) in the algebraic relations (6.3) and from the
equality of each matrix element (i, j ) on the left- and right-hand sides, get the following
equations. From the (1, 1) matrix element, we obtain

r0 = r1 = r2 = f1. (6.10)

From the matrix elements (1, 2), (2, 1) and (2, 2) we get

c
(0)
1 = M(α2Q2)p10+M(Q2)p01 = M(Q1)p02+M(α1Q1)p20

c
(1)
1 = M(Q2)p10+M(α2Q2)p01 = M(Q0/(α1α2))p21+M(Q0)p12

c
(2)
1 = M(α1Q1)p02+M(Q1)p20 = M(Q0/(α1α2))p12+M(Q0)p21 (6.11)

N(Q3
2α2)

N(α2)M(Q2)
f2 = f1+ p2

10+ p2
01+M(Q2

2α2)p01p10

N((α1α2)/Q
3
0)

N(α1α2)M(Q0)
f2 = f1+ p2

12+ p2
21+M((α1α2)/Q

2
0)p21p12

N(Q3
1α1)

N(α1)M(Q1)
f2 = f1+ p2

20+ p2
02+M(Q2

1α1)p02p20. (6.12)

Let us pause here for a moment. Equations (6.10) and (6.11) can also be obtained from
the vacuum expectation values of words of length two and three. The one-dimensional
representation is obtained from the conditionf1 = 0 and the two-dimensional representation
is obtained by settingf2 = 0 in (6.12). From equations (6.11) and (6.12) thepµν are
completely determined as are therµ (equation (6.10)). This means that in the algebra (6.3),
the free parameters areα1, α2 andQµ,µ = 0, 1, 2. The next logical step would be to solve
the equations and look for solutions with positive rates. This is a difficult exercise. For
a given physical problem, where some conditions on the rates are given, the problem is
simpler since there are fewer parameters.
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We now go on with the rest of the matrix elements (1, 3), (2, 3) and (3, 1)–(3, 3). We
get

Q2
0Q

2
1Q

2
2 = 1 (6.13)

c
(0)
2 =

M(Q1)

N(α1Q
4
1)
((N(α2

1Q
4
1)−N(Q2

1))p20+M(Q1)N(Q1α1)p02)

= M(Q2)

N(α2Q
4
2)
((N(α2

2Q
4
2)−N(Q2

2))p10+M(Q2)N(Q2α2)p01)

c
(1)
2 =

M(Q2)

N(α2Q
4
2)
((N(α2

2Q
4
2)−N(Q2

2))p01+M(Q2)N(Q2α2)p10)

= M(Q0)

N(Q4
0/(α1α2))

((
N

(
Q4

0

α1α2

)
−N(Q2

0)

)
p21+M(Q0)N

(
Q0

α1α2

)
p12

)
c
(2)
2 =

M(Q1)

N(α1Q
4
1)
((N(α2

1Q
4
1)−N(Q2

1))p02+M(Q1)N(Q2α2)p20)

= M(Q0)

N(Q4
0/α1α2)

((
N

(
Q4

0

α1α2

)
−N(Q2

0)

)
p12+M(Q0)N

(
Q0

α1α2

)
p21

)
(6.14)

and

f2 = −f1+ 1

N(α2Q2)
(N(Q2)c

(2)
0 c

(2)
1 −N(α2Q

2
2)(p01c

(2)
0 + p10c

(2)
1 ))

= − f1+ 1

N(Q0/α1α2)
(N(Q0)c

(2)
1 c

(2)
2 −N(Q2

0/(α1α2))(p12c
(2)
1 + p21c

(2)
2 ))

= − f1+ 1

N(α1Q1)
(N(Q1)c

(2)
0 c

(2)
2 −N(α1Q

2
1)(p20c

(2)
2 + p02c

(2)
0 )). (6.15)

Equations (6.11) and (6.14) give a system of six homogeneous equations for thepµν with
determinant generically different from zero. In order to have a non-trivial solution for
the pµν , we must set this determinant to zero, thus introducing an extra condition on
the rates. This leaves one of them (sayp10) free. The same equations determinec(µ)i

(i = 1, 2, µ = 0, 1, 2). We are thus left with eight equations: three from (6.12), one from
(6.13), three from (6.15), and one determinantal condition for the seven unknownsf2, p10,
Qµ andαi . (We can takefi = 1 in equation (6.10) to set the time scale.) This implies that
we cannot, generically have a three-dimensional representation. This also implies that the
algebra (6.3) with the Fock conditions (6.4) can have representations of dimensions one and
two only. The conditions on the parameters are not neat and we found no way to simplify
them.

We come now back to the physical problem. The algebra (5.22) contains nine
parameters—q0, q1, q2 and the ratios (y0/g10), (y0/g02), (y1/g10), (y1/g21), (y2/g02),
(y2/g21); the boundary conditions (5.24) depend on four others, theλi andµi for I = 1, 2.
This makes a total of 13 parameters. Therefore, for the physical problem, the case of
two-dimensional representations stays interesting since the algebraic varieties on which the
solution set exists in not trivial.

7. The two non-zero cofactors case

In the last section we considered the generic case where all the cofactorsLµ andRµ
are non-zero and we found that the algebra (5.22) had Fock representations defined by
equations (5.23) and (5.24) of dimension one and two only. We should have continued our
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study and looked at all cases when some or all of the cofactors vanish. In this section we
shall confine ourselves only to the case

L0 = L2 = R0 = R1 = 0 L1 6= 0,R2 6= 0. (7.1)

We had in mind the physical application of [5]. The interested reader can easily duplicate the
calculations presented in this section for the other cases. With (7.1), the Fock representations
have to satisfy the following simple conditions:

〈0|H0 = 〈0|H2 = 0 H0|0〉 = H1|0〉 = 0 〈0|Hµ|0〉 = 0. (7.2)

In order to find out in which cases the algebra (5.22) has Fock representations defined
by equation (7.2), we take vacuum expectation values for monomials of different degree.

Monomials of degree two (consider the algebra relations between〈0| and |0〉) give

u1 = u2 = 0. (7.3)

Monomials of degree three (consider〈0|H1H0H2|0〉 and commuteH0 through to the
left and the right) give

v10 = v20 = v. (7.4)

Monomials of degree four〈0|H1H1H0H2|0〉 and〈0|H1H2H0H2|0〉 give

q0v01 = q2v21 and q0v02 = q1v12 (7.5)

respectively. We have to distinguish several cases
(a) v12 andv21 are non-zero. Monomials of degree five (consider〈0|H1H0H1H2H2|0〉)

give

q1 = q2 = q. (7.6)

Taking into account relations (7.3)–(7.6) the algebra (5.22) becomes

qH0H1−H1H0 = vH1+ q

q0
v21H0

qH2H0−H0H2 = q

q0
v12H0+ vH2

q0H1H2−H2H1 = u0+ v12H1+ v21H2. (7.7)

It is useful to change variables

H0 = −vN H1 = u0

v12
A H2 = u0

v21
B z2 = u0q0

v12v21
(7.8)

in terms of which the algebra becomes

z2

(
AB − 1

q0
BA

)
= 1+A+ B (7.9a)

AN − qNA = A− q

z2
N (7.9b)

NB − qBN = B − q

z2
N . (7.9c)

This algebra has the representations

〈0|N = 0= N |0〉 〈0|B = 0= A|0〉. (7.10)
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We can now use the results of [9] to find the following representation of (7.9a):

A =


a1 f1 0 0 . . .

0 a2 f2 0 . . .

0 0 a3 f3 . . .

0 0 0 a4 . . .
...

...
...

...
. . .

 B = AT =


a1 0 0 0 . . .

f1 a2 0 0 . . .

0 f2 a3 0 . . .

0 0 f3 a4 . . .
...

...
...

...
. . .

 (7.11)

where

an = z−1
2 {n− 1}λ f 2

n = z−2
2 {n}λ(z2+ {n− 1}λ)

{n}λ = 1− λn
1− λ n > 1 {0}λ = 1 λ = q−1

0 . (7.12)

We have introduced the symbolz2 in keeping with the notation of [9].AT is the
transpose of matrixA. There are two cases when we can have representations forN in
equations (7.9):

(i)

q = q0 v01 = v21 v02 = v12 (7.13)

when

N =


h1 0 0 . . .

0 h2 0 . . .

0 0 h3 . . .
...

...
...

. . .

 (7.14)

with

hn = {n− 1}q (7.15)

(ii)

q = 0, q0 6= 0, v01 = v02 = 0 (7.16)

with

hn = {n− 1}q→0 = 1− δn1. (7.17)

(b) We consider the case (see equation (7.5))

v01 = v02 = v12 = v21 = 0 v10 = v20 = v u1 = u2 = 0. (7.18)

Monomials of degree five give (see equation (7.6))

q1 = q2 = q. (7.19)

With (7.18) and (7.19) the algebra (5.22) becomes

qH0H1−H1H0 = vH1

qH2H0−H0H2 = vH2

q0H1H2−H2H1 = u0. (7.20)

We make the transformation

H0 = −vN H1 =
√
u0

q0
A H2 =

√
u0

q0
B λ = 1

q0
(7.21)

and obtain the algebra relations

AB − λBA = 1 AN − qNA = A NB − qBN = B (7.22)
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and

A|0〉 = N |0〉 = 0= 〈0|B = 〈0|N . (7.23)

The Fock representation of this algebra (matrices satisfying (7.22) and (7.23)) is

A = BT =


0 g1 0 . . .

0 0 g2

0 0 0
...

. . .

 N =


h1 0 0 . . .

0 h2 0
0 0 h3
...

. . .

 (7.24)

where

g2
n = {n}λ hn = {n− 1}q . (7.25)

(c) We consider the case (see equation (7.5))

v21 = v01 = 0.

The algebra (5.22) again withq1 = q2 = q becomes

qH0H1−H1H0 = vH1

qH2H0−H0H2 = q

q0
v12H0+ vH2

q0H1H2−H2H1 = u0+ v12H1. (7.26)

We make the substitutions

H0 = −vN H1 = u0

v12
A H2 = v12

q0
B λ = 1

q0
(7.27)

to obtain the algebra

AB − λBA = 1+A AN − qNA = A NB − qBN = B − qN . (7.28)

This algebra has the representations

A =


0 f1 0 . . .

0 0 f2

0 0 0
...

. . .

 B =


b1 0 0 . . .

f1 b2 0
0 f2 b3
...

. . .

 (7.29)

where

f 2
n = {n}λ bn = {n− 1}λ (7.30)

and if:
(i)

q = q0 = λ−1

then

N =


h1 0 0 . . .

0 h2 0
0 0 h3
...

. . .

 (7.31)

where

hk = {k − 1}λ (7.32)



870 F C Alcaraz et al

(ii)

q = 0

which impliesv02 = 0 one has to take

hk = {k − 1}λ→0 = 1− δk1. (7.33)

In order to help the reader, we shall summarize the results. The algebra (5.22) has Fock
representations defined by

〈0|H2 = 〈0|H0 = 0= H0|0〉 = H1|0〉 (7.34)

if (necessary condition)

u1 = u2 = 0 v10 = v20 = v q1 = q2 = q (7.35)

in which case the algebra relations become

qH0H1−H1H0 = vH1+ v01H0

qH2H0−H0H2 = v02H0+ vH2

q0H1H2−H2H1 = u0+ v12H1+ v21H2. (7.36)

This algebra has Fock representations in five cases
(1)

v01 = v21 v02 = v12 q0 = q. (7.37)

With the notation

H0 = −vN H1 = u0

v12
A H2 = u0

v21
B z2 = u0q0

v12v21

A andB are given by equation (7.11)–(7.12) withλ = q−1
0 andN by equations (7.14) with

(7.15).
(2)

v01 = v02 = q = 0. (7.38)

Same as case (1) except thatN is given by equation (7.14) with (7.17).
(3)

v01 = v02 = v12 = v21 = 0. (7.39)

H0 = −vN H1 =
√
u0

q0
A H2 =

√
u0

q0
B λ = 1

q0
. (7.40)

A, B andN are given by equation (7.24) and (7.25).
(4)

v01 = v21 = 0 q = q0 = 1

λ

H0 = −vN H1 = u0

v12
A H2 = v12

q0
B λ = 1

q0
. (7.41)

A, B andN are given by equation (7.29) andN by equation (7.31) with (7.32).
(5)

v02 = v01 = v21 = 0 q0.

Everything as in case (4) exceptN is given by equation (7.31) with equation (7.33).
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This closes the problem of Fock representation of the algebra (7.7). We now turn to the
physical problem. This implies using the definitions (5.19) and (5.20) of the parametersuµ
anduµν . We first have to give the boundary rates which give equation (7.1). Using (2.7)
we have the solution

L1
2 = L1

0 = R2
1 = R2

0 = 0

L1 = L0
1L

2
0+ L2

1L
0
1+ L2

1L
0
2

R2 = R1
0R

0
2 + R1

2R
0
1 + R1

2R
0
2. (7.42)

We now computeBµ andxµ using equations (5.8) and (5.9):

δ0 = ξ(R1
0L

2
1+ L2

0R
1
0 + L2

0R
1
2)

δ1 = ξ(R0
1L

2
0+ R0

1L
2
1+ R0

2L
2
1+ L1)

δ2 = ξ(R1
0L

0
2+ R1

2L
0
2+ R1

2L
0
1+R2) (7.43)

and

x0 = ξ(L2
0R2− R1

0L1)

x1 = ξ(L2
1R2+ (R1

0 + R1
2)L1)

x2 = −ξ((L2
0+ L2

1)R2+ R1
2L1). (7.44)

We now implement the conditions (7.35) to get

y0 = 0 y1 = g10(1− q) y2 = −g02(1− q). (7.45)

We have to consider the five cases separately.
(1) From (7.37) and (5.20) we get

y1 = 0= y2. (7.46)

Taking into account the positivity of the rates, the definition (5.17) and the relation (5.6)
this can be excluded.

(2) From equation (7.38) and (5.19) we have

g20 = 0= g01 y0 = 0 y1 = g10 y2 = −g02. (7.47)

Using the definitions (5.19) and (5.20) we get

v10 = v20 = 1

and

v12 = 1− q0+ g02

g21
v21 = 1− q0+ g10

g21
u0 = 1− q0+ g10+ g20

g21

and the following constraints on the rates coming from the definition (5.17) ofyµ and from
equation (7.47):

L2
0R2 = R1

0L1

g10 = L2
1R2+ (R1

0 + R1
2)L1

R0
1L

2
0+ R0

1L
2
1+ R0

2L
2
1+ L1

g02 = (L2
0+ L2

1)R2+ R1
2L1

R1
0L

0
2+ R1

2L
0
2+ R1

2L
0
1+R2

. (7.48)

(3) As a consequence of equations (7.39) and (7.45) we find

g10 = g02 g01 = g20 g12− g21 = g10− g01 (7.49)

y0 = 0 y1 = −y2 = g10− g01 (7.50)
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and

v12 = 0= v21 u0 = q0− 1 v10 = v20 = 1− q. (7.51)

From equation (7.50) we find the following constraints on the rates:

L2
0R2 = R1

0L1

L2
1R2+ (R1

0 + R1
2)L1

R0
1L

2
0+ R0

1L
2
1+ R0

2L
2
1+ L1

= (L2
0+ L2

1)R2+ R1
2L1

R1
0L

0
2+ R1

2L
0
2+ R1

2L
0
1+R2

= g10− g01. (7.52)

(4) No solutions if we want to maintain positivity of the rates.
(5) We find

g21+ g10 = g12 g20 = 0= g01 (7.53)

y0 = 0 y1 = g10 y2 = −g02 (7.54)

and

v10 = v20 = 1 v12 = g02− g10

g21
u0 = g02

g21
. (7.55)

The conditions on the rates can be derived from equations (7.54) and (5.17). Notice that
this case is a specialization of case (3). The representation is different becausez2 defined
in equation (7.8) and used for case (3) diverges (v21 = 0).

In the appendix we consider the case of aCP -invariant stochastic process [5]. In
this problem, the index ‘0’ denotes vacancies, ‘1’ is the index for particles and ‘2’ for
anti-particles. This implies supplementary conditions on the rates. If we are interested in
the case where theCP -symmetry is explicitly broken [41, 42], one can use the solutions
corresponding to the cases (2), (3) and (5). In all three cases theDα have the form

Dα = xαEα(xα 6= 0) Dα = Eα(xα = 0) (7.56)

whereEα, which can be extracted from the formulae given above and are given explicitly in
[25], depend only on the bulk rates. The boundary rates enter in the expressions ofxα and
through the fact that they have to ‘match’ the bulk rates (see equations (7.48) and (7.52)).
This observation allows us to see the important parameters of the problem.

Before closing this section, let us note that the case where only the cofactorsL0 and
R0 vanish can be treated in a similar way. In this case, the algebras satisfied by theA
andB matrices (see equations (7.9a) and (7.28)) containA2 andB2 terms as well. Fock
representations for this case are also known [9].

8. Lower rank boundary intensity matrices

In sections 6 and 7 the Fock representations were defined by four conditions (see
equations (5.24), (6.4) or (7.2)). The number of conditions depends on the rank of
the boundary intensity matrices. In principle, one should examine all the possibilities
enumerated in equations (4.6)–(4.12) for both left and right intensity matrices. This is a
long exercise. The main point is that once eitherLνµ or Rνµ or both have all the principal
minors to be zero, the number of conditions is smaller and one has more freedom for the
bulk rates. We shall give only four illustrative examples in which the physics can be easily
understood.

(a)L1 6= 0, all other cofactors zero. We take the following to be the boundary intensity
matrices:

L =
(−L0

1− L0
2 0 L2

0
L0

1 0 L2
1

L0
2 0 −L2

1− L2
0

)
and R =

(−R0
1 R1

0 0
R0

1 −R1
0 0

0 0 0

)
. (8.1)
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We setξ = 1 in equations (5.8) and (5.9) to get

x0 = −R1
0L1 x1 = R1

0L1 x2 = 0

δ0 = R1
0(L

2
1+ L2

0) δ1 = R0
1(L

2
1+ L2

0)+ L1 δ2 = R1
0L

0
2. (8.2)

We get several constraints on the various parametersvij anduk that appear in the algebra
(5.22) and are given in terms of the bulk and boundary rates in (5.19) and (5.20). From the
conditionx2 = 0, and by sandwiching (5.22) between〈0| and |0〉, we obtain

v21 = u0 v20 = u1 = 0.

From 〈0|H1H2H0H2|0〉 we obtain

v10 = 0

from which, on calculating〈0|H1H0H2|0〉, we get q1 = q0 = q. The correlator
〈0|H1H0H1H2|0〉 gives

q2 = 1+ v01

u0
(q − 1)

so we end up with
x0

δ0
= (g01− g10) = (g02− g20) = (g21− g12)

v12 = v02 = (1− q). (8.3)

The algebra is of a similar form as case (c) of section 7 (equation (7.26)), apart from a
relabelling of the indices and the presence of an additional constant term:

qH1H2−H2H1 = v21H2+ (1− q)H1+ v21

qH2H0−H0H2 = (1− q)H0 (8.4)

q2H0H1−H1H0 = v01H0+ u2.

Introducing

H0 = u2

v01
A H1 = v21B H2 = (q − 1)N

λ = q−1
2 and γ = −g02

g01
(8.5)

we get (compare with equation (7.28)):

AB − λBA = γ (1+A)
AN − qNA = A
NB − qBN = B −N + 1

1− q . (8.6)

Also, instead of four Fock conditions as in section 7, we have only three:

〈0|A = 〈0|N = 0 B|0〉 = αA|0〉 (8.7)

with

α =
(

g02δ0

x0(δ1− δ0)

)(
δ0

δ1

R0
1

R1
0

)
. (8.8)

We have not looked for explicit representations of this algebra.
(b) All the cofactors are zero. We consider the case when only the following four

boundary rates do not vanish:

L0
2 L2

0 R1
0 and R0

1. (8.9)
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We find from (5.9)

xµ = 0 (µ = 0, 1, 2) (8.10)

and the algebra is a known quadratic algebra (see section 3)

q0D1D2 = D2D1 q1D2D0 = D0D2 q2D0D1 = D1D0 (8.11)

with only two conditions:

D1|0〉 = R0
1

R1
0

D0|0〉 and 〈0|D2 = L0
2

L2
0

〈0|D0. (8.12)

All vacuum expectation values of degreeL can be expressed in terms of〈0|DL
0 |0〉. The

appearance of the polynomial algebras in this new context is very interesting since, as shown
in section 3, we know plenty of them, and not just for the simple exclusion processes. This
opens up the possibility of a new class of solutions for more general processes with open
ends.

(c) All the cofactors are zero, but the non-zero boundary rates are

L0
1 L0

2 R1
0 and R0

1. (8.13)

In this case the algebra is also given by (8.11) andxµ = 0, (µ = 0, 1, 2), but the generators
satisfy the conditions

〈0|D0 = 0 and D1|0〉 = R0
1

R1
0

D0|0〉. (8.14)

It is interesting to observe that no boundary condition appears for the operatorD2. Using
(8.11) and (8.14) it is simple to see that the ground state will have the single wordDL

2 ,
which corresponds to the lattice filled by particle ‘2’. This can be expected physically from
(8.13) since the species ‘2’ is never removed from the chain at either end, unlike the species
‘0’ and ‘1’, and is created at the left end with a certain rateL0

2 6= 0. Therefore, when the
time goes to infinity the system will end up with only particles of species ‘2’.

(d) All cofactors are zero, but the non-zero boundary rates are

L0
1 L0

2 R0
1 and R0

2. (8.15)

The algebra is again by (8.11) but the conditions are

〈0|D0 = D0|0〉 = 0 (8.16)

with no conditions forD1 and D2. In this case, we haveL degenerate ground states
expressed in terms of the wordsDn

1D
L−n
2 (n = 1, 2, . . . , L). This is expected physically

from (8.15) since, in the large time limit, we should expect no ‘0’ particles and the particles
‘1’ and ‘2’ are conserved separately.

9. Conclusions

This was a long journey. We will first list the mathematical results which are independent of
the physical applications. In section 3 we have given a list of polynomial algebras defined
by a set of homogeneous quadratic relations (see, for example (3.25)–(3.27)). In sections 6
and 7 we have given Fock representations for the algebra defined by equation (5.22). These
are a special class of the inhomogeneous quadratic algebras defined by equation (1.24).
The representations are one-dimensional (see (5.16)), two-dimensional for the ‘generic’
case described in section 6, or infinite-dimensional (see the five special cases of the
algebra (7.36)). These algebras can be useful for physical applications other than for the
case of open chains considered in this paper. For example, we used them ourselves while
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studying stochastic processes on a ring [25]. As for the physical applications relevant to
this paper, we have looked for steady states of stochastic processes defined by bulk and
boundary intensity matrices (see (1.1)). The probability distribution of the steady states is
given by the expression (1.14) for chains with open ends.

In our approach the same expression without|0〉 is used for a left open end and a closed
right end. In the case of closed chains we have to drop the〈0| and|0〉 symbols. Polynomial
algebras are defined by taking theX’s equal to zero in equation (1.12). They exist only
for special choices of the bulk rates. A given polynomial algebras can be used in three
places: for closed ends (see section 3), for the left end open and the right end closed when
supplementary restrictions come from the first equation in (1.13) with theX taken to be
zero (see section 4) and even for the case of a chain with open ends (see, the example, in
section 8, (8.11) and (8.12)). As far as we know, it is the first time that the problem with
one or two closed ends has been solved using algebraic methods.

Most of this paper is dedicated to the problem of the chain with open ends where we
have takenc-numbers for theX in equations (1.12) and (1.13). We have confined ourselves
to the simpler problem of exclusion processes. In solving this problem a crucial point is
the rank of the boundary intensity matrices, since they dictate the number of conditions
which define the Fock representations. In the three-state problem, they can be four (see
sections 6 and 7) three or two (see section 8). In the case of four conditions an important
role is played by the number of cofactors of the boundary intensity matrices which vanish.
All in all, we have given many examples which can be used for physical applications. It is
obvious how the present method may be generalized to four- or more-state problems. The
case of periodic boundary conditions is considered in [25].

After writing this paper, one can ask where the mathematical beauty lies: probably in
the simpler cases where polynomial algebras can be used and in the algebras described in
section 7. The problem of open boundaries with two states depends on five parameters; the
one with three states on 17 parameters and there is a price to pay in order to find solutions. In
this paper we have never properly exploited the Krebs–Sandow theorem (equations (1.12)–
(1.15)) since we have always chosen representations of theXα to be scalars or zero. The
reason for this is that we wanted to have quadratic algebras that are understood, like the
polynomial algebras or those of type (1.24), and we did not find new ones.

We would like to make one last comment which has to do with the connection between
finding the ground states by algebraic methods and the integrability of the Hamiltonian. As
is shown in section 3, several exactly integrable Hamiltonians, connected with stochastic
dynamics, can have their ground-state wavefunction expressed in terms of words defined
by algebraic relations. However, in general, the existence of an algebraic form of the
ground-state wavefunction is not a sufficient condition in order to ensure exact integrability.
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Appendix. The CP-invariant steady state

It was recently shown that in steady statesCP -invariance can be spontaneously broken
[5] and that the phase diagram cannot be obtained by mean-field methods [25]. This is
not the right place to describe the physics of the problem and the interested reader should
have a look at the references. The model where this invariance is spontaneously broken
is a special case of the problem studied in section 7, where the rates we choose areCP -
invariant. Charge conjugation (C) is defined by the operation 1→ 2, 2→ 1 and 0→ 0,
while the parity (P ) operator corresponds to interchanging left and right.

The non-vanishing boundary rates are

L2
1 = R1

2 L0
1 = R0

2 L0
2 = R0

1 L2
0 = R1

0

L1 = R2 L0 = L2 = R0 = R1 = 0. (A.1)

The bulk rates are

g10 = g02 g01 = g20 q1 = q2 = q (A.2)

andg12 andg21 are arbitrary.
In [5] a special choice was taken:

L0
1 = R0

2 = α and L2
0 = R1

0 = β (A.3)

with all other boundary rates set to zero. The non-vanishing bulk rates were taken to be
g12 = g10 = g02. Here we consider the general case.

From equations (7.43), (7.44) and (5.17) and choosingξ−1 = (L2
0+ 2L2

1) we obtain

δ0 = L2
0 δ1 = δ2 = (L0

1+ L0
2)

y0 = 0 y1 = −y2 = L0
1L

2
0

L0
1+ L0

2

+ L2
1. (A.4)

We now use the results of section 7 (equations (7.43)–(7.55)). From equation (7.45) and
(A.4) we have

L0
1L

2
0

L0
1+ L0

2

+ L2
1 = g10− g01. (A.5)

We now consider the cases (2), (3) and (5) separately.

Case (2), g20 = g01 = 0. We use equations (7.47) and (7.48) to get

L0
1L

2
0

L0
1+ L0

2

+ L2
1 = g10 (A.6)

and

v10 = v20 = 1 v01 = v02 = 0

v12 = v21 = g10+ g21− g12

g21
u0 = 2g10+ g21− g12

g21
. (A.7)

Using equation (5.21) it is easy to show that

D1 =
(
L0

1+ L0
2

L2
0

)
(1+H1) D2 =

(
L0

1+ L0
2

L2
0

)
(1+H2). (A.8)

Introducing

λ = 1

q0
= g21

g12
and ω = g10

g12
(A.9)
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we have

H1 = H T
2 =
√

2ω + λ− 1


u1 v1 0 . . .

0 u2 v2 . . .

0 0 u3 . . .
...

...
...

. . .

 D0 =


1 0 0 . . .

0 0 0 . . .

0 0 0 . . .
...

...
...

. . .

 (A.10)

where

v2
n = {n}λ

(
1+ (ω + λ− 1)2

(2ω − 1+ λ) {n− 1}λ
)

un = (ω + λ− 1)√
2ω − 1+ λ {n− 1}λ. (A.11)

Notice that the boundary conditions appear only in (A.6) and in the normalization factors
of D1 andD2. They do not change the physics of the problem which is governed byω and
λ. In other words, taking only the rates (A.3) or the general case (A.1) does not change the
physical results.

In [5] only the caseλ = 0 was considered.

Case (3), g10 = g02, g01 = g20 andg12−g21 = g10−g01. We make use of equations (7.49)–
(7.52). The bulk rates and the boundary rates are related by the constraint

g10− g01 = L0
1L

2
0

L0
1+ L0

2

+ L2
1. (A.12)

We then have

D1 = L0
1+ L0

2

L2
0

(1+ R) D2 = DT
1

R =


0 r1 0 . . .

0 0 r2 . . .

0 0 0 . . .
...

...
...

. . .

 D0 =


s1 0 0 . . .

0 s2 0 . . .

0 0 s3 . . .
...

...
...

. . .

 (A.13)

where

r2
k = 1− λk and sk = 1− {k − 1}q (A.14)

with

λ = g21

g12
and q = g20

g02
= g01

g10
. (A.15)

Notice once more that the boundary terms are not essential and in this case as well, the
conditions (A.3) capture the whole physics.

Case (5), (see equations (7.53)–(7.55)). Since g02 = g10, we get v12 = 0 (see
equation (7.55)) which together with (7.41) brings us back to case (3).

In conclusion, the algebraic approach is possible only if certain conditions are satisfied
by the bulk rates. The boundary rates have to ‘match’ the bulk rates (see, for example,
equations (A.5) and (A.6)). In particular, if the bulk rates are chosen as in [5] the physics
will be the same if we have four boundary rates as in this paper or only two as in [5]. What
we have shown, however, is that we can consider bulk rates other than those in [5]. For
more on this subject see [42].
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